Vector-valued Maclaurin inequalities
نویسندگان
چکیده
We investigate a Maclaurin inequality for vectors and its connection to an Aleksandrov-type parallelepipeds.
منابع مشابه
Extremal Vector Valued Inequalities for Hankel Transforms
The disc multiplier may be seen as a vector valued operator when we consider its projections in terms of the spherical harmonics. In this form, it represents a vector valued Hankel transform. We know that, for radial functions, it is bounded on the spaces Lplq (r n−1 dr) when 2n n+1 < p, q < 2n n−1 . Here we prove that there exist weak-type estimates for this operator for the extremal exponents...
متن کاملVector–valued Hardy Inequalities and B–convexity
Inequalities of the form ∑∞ k=0 |f̂(mk)| k+1 ≤ C ‖f‖1 for all f ∈ H1, where {mk} are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy’s inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms of atoms and that they actually characterize B-convexity. It is also shown that for 1 < ...
متن کاملComplex convexity and vector-valued Littlewood–Paley inequalities
Let 2 ≤ p < ∞ and let X be a complex Banach space. It is shown that X is p-uniformly PL-convex if and only if there exists λ > 0 such that ‖f‖Hp(X) ≥ ( ‖f(0)‖p + λ ∫ D (1− |z|2)p−1‖f ′(z)‖pdA(z) )1/p , for all f ∈ Hp(X). Applications to embeddings between vector-valued BMOA spaces defined via Poisson integral or Carleson measures are provided. AMS Subject Class. 46B20,46L52
متن کاملOptimal Control of Elastic Vector-Valued Allen-Cahn Variational Inequalities
In this paper we consider a elastic vector-valued Allen-Cahn MPCC (Mathematical Programs with Complementarity Constraints) problem. We use a regularization approach to get the optimality system for the subproblems. By passing to the limit in the optimality conditions for the regularized subproblems, we derive certain generalized first-order necessary optimality conditions for the original problem.
متن کاملSharp Weighted Inequalities for the Vector–valued Maximal Function
We prove in this paper some sharp weighted inequalities for the vector–valued maximal function Mq of Fefferman and Stein defined by Mqf(x) = ( ∞ ∑ i=1 (Mfi(x)) q )1/q , where M is the Hardy–Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < ∞ there exists a constant C such that ∫ Rn Mqf(x) p w(x)dx ≤ C ∫ Rn |f(x)|qM [ p q ]+1 w(x)d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2021
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s0219199721500449